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ABSTRACT 

Aluminum-nickel (Al-Ni) alloys and Al/Ni bilayers were successfully electrodeposited from AlCl3-

EMIM-NiCl2 electrolyte at room temperature. Dissolution of NiCl2 was shown to be favorable in Lewis 

basic (with molar ratio of AlCl3 < 0.5) AlCl3-EMIM solution. The use of electrochemically active Cu 

working electrode as opposed to inert W induced additional Cu oxidation and dissolution in the cyclic 

voltammetry scan. The reduction potentials of Al and Ni were found to be ~ − 0.3 and 0.15 V vs. Al/Al3+ 

respectively. Increasing [NiCl2] in the electrolyte leads to an increase of Ni concentration in the deposited 

structures. Dense and well-adherent Al-Ni alloys with Ni concentration up to 17.7 at.% were deposited by 

potential control. XRD analysis revealed that the deposited Al-Ni exhibit a supersaturated fcc crystalline 

structure. The visual appearance of the deposits ranged from bright silver, dull silver, grey, to black, where 

the darker shade typically indicated higher Ni content. SEM analysis revealed that the surface morphology 

of the deposits ranged from nodular to flake-like structures. Al-Ni alloy typically showed nodular 

morphology with cauliflower structure. Flake structures, which were independent of substrate roughness, 

were found to develop under pulsed potential deposition with 1:1 duty ratio. 

The concentration of Ni in electrodeposited Al-Ni alloys increases nonlinearly with the increase in 

molarity of NiCl2. Al and Ni contents increase with increasing the time of positive and negative cycle of 

the pulse respectively. Decreasing the frequency by half resulted in almost double the amount of Ni in the 

deposited alloy. A smoother substrate increased Ni concentration from 6 to 17.7 at.%. Al/Ni bilayer was 

successfully deposited in 1.5:1 AlCl3-EMIM containing 0.026 M NiCl2. Deposition of Al on Ni was 

achieved using constant potential and pulse potential control. The deposition of Ni on Al is complicated 

since the deposition potential of Ni lies in the vicinity of Al stripping potential thus inducing competition 

between Ni deposition and Al stripping.         



www.manaraa.com

 

1 

 

 

 

CHAPTER 1: INTRODUCTION 

Al, when alloyed with appropriate transition metals (TMs), exhibit excellent physical and 

mechanical properties [1]. Among various alloying elements, Ni is particularly interesting because Al-Ni 

exhibits excellent corrosion resistance, high temperature oxidation resistance, high strength, good ductility, 

and magnetic pertinence [2-7]. While traditional Al-based alloys are mostly crystalline in nature, recent 

developments in metallic glasses have sparkled great interest in developing Al-based metallic glass [2]. 

Transition metals such as Fe, Co, Ni or Cu are often used with rare earth metals to make Al-based metallic 

glasses. Among all TMs, Ni has the greatest effective amorphous alloy forming capability with Al, followed 

by Fe, Co, and Cu. Amorphization is closely related to reduced glass transition temperature (Tg/Tm) where 

Tg and Tm are the glass transition and melting temperature respectively. Glass forming ability (GFA) of 

these alloys is directly proportional to Tg/Tm. Strategies for synthesizing glass forming alloys developed 

over the years include Egami’s volume strain criterion [8-10], Miracle’s topological criterion [11, 12] and 

Inoue’s three empirical rules [13, 14]. Inoue’s rules state that,  

1. the alloy system must consist of at least 3 components as the formation of amorphous phase 

becomes easier with increasing number of components 

2. the atomic radius mismatch between the constituent elements must differ by 12% or more 

3. there should be large negative heats of mixing between the components 

For a binary system of Al with a late transition metal (LTM), Inoue’s rule # 3 is best satisfied by 

Ni with a heat of mixing of -114 kJ mol-1 [15]. Thus Al-Ni alloy system is chosen for the purpose of this 

research. 

Various processing techniques have been used to synthesize Al-Ni including physical vapor 

deposition (PVD) [16, 17], plasma assisted chemical vapor deposition (PACVD) [18, 19], hot pressing [20] 
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and electromagnetic stirring [21, 22]. Among these techniques, electrodeposition (ED) is the most 

economical and easy to scale-up technique which allows easy control of composition and phase of the 

deposit by adjusting deposition parameters including electrolyte composition, agitation, temperature and 

current/potential. Due to these characteristics, ED of Al and its alloys with various transition metals have 

been a topic of great interest among researchers for more than a century now. For these reasons, we focus 

on the ED process in this thesis. 

However, ED of Al and its alloy is not very easy to perform.  For the longest time, the Hall-Héroult 

process was used for the ED of Al in ores. The main drawbacks to this method is the process complication 

caused by the requirement of very high temperatures (950-1000°C) and pollutant emission [23-25]. Certain 

advancements in the Hall- Héroult process lowered this temperature to 900°C by adding 5 wt.% LiF in the 

electrolyte [26]. Also, Al cannot be deposited in aqueous solutions due to the evolution of hydrogen prior 

to the Al deposition process. ED in non-aqueous room temperature solutions or ionic liquids (ILs), on the 

other hand, provides a cost effective alternative due to recent developments. It has been the most researched 

topic in the field of ED of metals from ILs as compared to ED of other metals [27]. Aprotic non-aqueous 

electrolytes such as aluminum chloride (AlCl33) with 1-ethyl-3-methylimidazolium chloride (EMIM), N-

[n-Butyl] pyridinium chloride (BPC), trimethylphenylammonium chloride (TMPAC) etc. have been 

successfully utilized to deposit Al [7, 23, 25, 28]. These room temperature ionic liquids and their ED 

capabilities have sparked tremendous excitement among researchers over the years. Due to their 

hygroscopic nature, many of these electrolytes must be used under inert environment. High temperature 

ionic liquids such as AlCl3 with sodium chloride (NaCl) are also available. But their main disadvantage is 

the high vapor pressure of Al2Cl6 which is unfavorable  for modern applications [29]. 

In addition to Al-Ni alloy system, another interesting application of these metals is the Al/Ni 

reactive multilayer system. These multilayers have a lot of advantages including easy ignition, self-

sustaining exothermic synthesis after reaction, very high local temperatures upon propagation (around 

1000°C) and zero emission making them environmental friendly [30, 31]. These characteristics make them 
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useful in applications such as soldering, welding, brazing, joining, sealing, ignition, local heat sourcing and 

propulsion [31, 32]. Researchers have fabricated these layers using cold rolling [33], sputtering [30, 31] 

and electron-beam deposition [34]. These methods have their own advantages but are either very expensive 

or not very efficient at producing continuous multilayers. Up till now, there has not been any reports of 

producing Al/Ni multilayers using ED in chloroaluminate molten salts. 

There has been a lot of studies on the ED of Al but those of Al alloys, especially Al-Ni, are a few. 

For Al-Ni ED, AlCl3-EMIM-NiCl2 of desired molarity is required. Previous study suggests that NiCl2 is 

difficult to dissolve in acidic AlCl3-BPC while it was readily dissolved in basic melt [35]. However, there 

has only been a few studies on the behavior of the dissolution of NiCl2 in AlCl3-EMIM and its 

electrochemical properties. 

Based on the observations mentioned above, this thesis seeks to study the electrochemistry of Al-

Ni deposition, understand the structure-processing relationship, with an ultimate goal of producing 

electrodeposited Al-Ni and Al/Ni multilayers using AlCl3-EMIM-NiCl2 ionic liquid. The organization of 

this thesis is described with a brief introduction to the concerning chapters below, 

 Chapter 2: This chapter deals with the study on the synthesis and electrochemical properties of 

AlCl3-EMIM-NiCl2 room temperature molten salt. 

 Chapter 3: ED of Al-Ni alloy and bilayers in AlCl3-EMIM-NiCl2 is described in this chapter. 

The deposits are characterized based on microstructure, surface morphology, composition and 

phase identification. 
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CHAPTER 2: ELECTROCHEMICAL PROPERTIES OF AlCl3-EMIM-NiCl2 

2.1 Background 

Electrodeposition (ED) of metallic materials involves reduction of metal ions from a conductive 

electrolyte using an electric current or potential. The electrolyte is composed of cations and anions which 

act as charge carriers for the current. During metal ED, the cations are transferred to the cathode where they 

are reduced under the influence of an applied current or potential. In Ni deposition, Ni2+  is reduced 

according to the following reaction [29], 

 Ni2+(solv) + 2e−  →  Ni. (2.1) 

Organic chloroaluminate molten salt synthesized by adding aluminum chloride (AlCl3) to 1-ethyl-

3-methylimidazolium chloride (EMIM) provides useful and attractive characteristics such as adjustable 

Lewis acidity, wide electrochemical window, aprotic nature, room temperature stability, good conductivity, 

and low vapor pressure [24, 29]. AlCl4
- and Al2Cl7

- unsaturated species are present in the electrolyte while 

the concentration of the later increases with electrolyte acidity. The acid base characteristic of this melt is 

represented by the reaction [36], 

 2AlCl4
−  ↔  Al2Cl7

− + Cl−. (2.2) 

In AlCl3-EMIM electrolyte, Al ED can only be successful in acidic solution since the formation of 

the electroactive Al2Cl7
- is formed only when the molar fraction of AlCl3 becomes larger than 0.5. In basic 

AlCl3-EMIM solutions, the only electroactive specie is AlCl4

-
 , whose reduction potential is more negative 

than the breakdown potential of the organic cation from the electrolyte. The electrochemically active Al2Cl7
- 

unsaturated ion reduces to Al at the cathode according to the following reaction [37], 

 4Al2Cl7
− + 3e− ↔ Al + 7AlCl4

−. (2.3) 
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Tang and Azumi [38] experimented on depositing Al on Pt substrate in AlCl3-EMIM melt using 

various polarization techniques to optimize the grain size and microstructure of the deposits. Current pulse 

method was found to produce dense and well adherent Al deposits with a smooth surface. An inverse 

dependence of grain size with the applied current density was confirmed using galvanostatic polarization. 

Monopolar current pulse method gave smooth surface deposits at higher current density. The bipolar current 

pulse polarization was endorsed since it ameliorated the adhesion capability of the deposits in addition to 

enhanced smoothness and density of the deposits. Jiang et al. [24] studied ED of Al using AlCl3-EMIM on 

Al substrates since they have high current densities to target recycling of Al. Electrical conductivities of 

1.5:1 and 2:1 molar ratio AlCl3-EMIM melt increase with temperature. Constant potential controlled ED of 

Al at potentials from -0.1 to -0.4 V yielded dense and continuous deposits at 60°C. Constant current 

controlled deposition at 90°C produced dense and well adherent deposits from 10 to 100 mA˖cm-2 and 

loosely adherent deposits when current densities exceeds 100 mA.cm-2. Liao et al. [28] carried out ED of 

Al on Cu in AlCl3-EMIM melts with benzene added as a cosolvent. The addition of benzene in the melt 

enhanced the quality of the deposit by greatly reducing the viscosity and increasing the conductivity of the 

electrolyte. Current controlled electrolysis with current densities ranging from 0.75 to 7.54 mA.cm-2 was 

used to deposit Al. They observed a decrease in the crystallite size with the increase in the current density 

and a transition from dull grey to white color of the deposit when the molar ratio of the melt is changed 

from 2:1 to 1.5:1. 

The microstructure of the electrodeposited Al was characterized by Jiang et al. [24] to change from 

fine and dense crystallites to a dendritic structure upon increasing the current density above 100 mA˖cm-2. 

They also found that the aluminum crystallites size decreased as the current densities increased. Similar 

dense Al deposits with a smooth structure and equiaxed grains at higher current densities were also reported 

in other works [28]. ED of Al is widely considered to follow a two stage process starting with initial 

nucleation followed by deposit growth [38]. 
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Ni deposition in chloroaluminate melts is an area of great interest among researchers. Deng et al. 

[39] studied the ED characteristics of Ni in 1-ethyl-3-methylimidazolium dicyanamide (EMIM-DCA) with 

AlCl3 and NiCl2 glassy carbon and Cu substrates. Cyclic voltammetry study revealed the nickel reduction 

peak at -1.6 V. Deposition potential greatly influenced the microstructure and morphology of the deposits. 

Dense and compact deposits were obtained at potentials of -1.4 V while cracks start to develop at potentials 

around -1.5 V. Ni deposited at -1.6 V showed a coarse cauliflower structure due to high deposition rate. 

The surface roughness measured by AFM was 16 nm for -1.4 V deposition potential and increased to 90 

nm at -1.6 V. The deposition of Ni was considered to follow a three dimensional progressive nucleation 

with diffusion controlled growth on both the electrodes. X-Ray diffraction revealed the presence of a 

crystalline structure with Al (111) and Ni (200). 

Although ED of Al and Ni are well researched, which also entails the study of the electrochemical 

properties and synthesis of the electrolyte, a comprehensive study on the synthesis, electrochemical 

properties of AlCl3-EMIM-NiCl2 and the effect of the working electrode (WE) on the reduction and 

oxidation peaks is required. This chapter aims to address these issues. 

2.2 Materials and Experimental Procedure 

2.2.1 Working Environment 

The chemicals used in the ED are highly sensitive to moisture and O2. Thus an inert environment 

is required to prevent chemical degradation and provide a stable environment for all the reactions. 

MBRAUN LABstar Glove Box Workstation (shown in Figure 1) was utilized for all environment-sensitive 

processes. This Ar-filled glove box is capable of maintaining H2O < 1 ppm and O2 < 1 ppm through a 

compact gas purification system while also sustaining the desired pressure level. All experiments inside the 

glove box were carried out in the 2 to 4 mBar pressure range while the chemicals were stored at 8 to 12 

mBar in idle state. 
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Figure 1. Photograph of MBRAUN LABstar glove box workstation. 

2.2.2 Chemicals 

The synthesis of the electrolyte for the desired ED process requires moisture and O2 sensitive 

chemicals including Lewis acids and bases. Acidic metal bases including anhydrous aluminum chloride 

(AlCl3, 99.999%, Aldrich) and anhydrous Nickel chloride (NiCl2, 99%, Alfa Aesar) were used as-received. 

1-Ethyl-3-methylimidazolium chloride (EMIM, >98% , Iolitec) were purified similar to previous work to 

be used as bases [40]. All the chemicals were kept in inert and dry conditions all the time. EMIM is highly 

sensitive to air and moisture. In general, as-received EMIM is purified prior to ED to remove excess 

moisture. The most extensively used method for the pretreatment and purification of EMIM was previously 

described [40]. This method and variations of it developed over the years involves heating EMIM for 2 or 

more days at 60 to 75 °C under vacuum. Another method described in the literature comprises of heating 

the EMIM at 100 °C for 24 hours [38]. Both variations of the heat treatment of EMIM to remove excess 

moisture were exercised and tested in this research. 
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2.2.3 Electrodes 

The nature of electrodes in ED process plays a major role in the quality and characteristics of the 

deposits. Li et al. [41] studied the effect of various WEs including glassy carbon (GC), W, Ni, Al and Cu 

during Al ED in inorganic chloroaluminate molten salt NaAlCl4 electrolytes at 175°C. Cyclic 

voltammograms (CV) of these systems with potential sweeps ranging from around 2 to -0.2 V were used 

to exam the different behaviors of these WEs. It was found that GC and W WEs were electrochemically 

inert during the complete CV scan whereas Ni substrate formed NiCl2 at 1 V according to the following 

reaction, 

 Ni + 2Cl− ↔ NiCl2 + 2e−. (2.4) 

Also, the deposits on the GC WE were found to be discontinuous with poor adhesion. Cu WE was 

highly active and continuously dissolved in the melt at potentials higher than 0.2 V. For Al WE, Al 

reduction initiated at 0 V. Ni and W WEs were suggested for Al/NaCl-AlCl3/Ni battery system as they 

showed better reversibility of deposition and stripping. To test the effects of both an inert and 

electrochemically active substrate on the characteristics of the electrolyte, W and Cu were selected as WEs 

for this research. 

In the present work, Al plate (99.99%, Alfa Aesar) and Al wire (99.99%, Alfa Aesar) were used as 

the counter and reference electrodes respectively unless specified otherwise. Three different materials: Cu 

plate (99.99%, Online Metals, 25 x 15 x 1 mm), Al plate (99.99%, Alfa Aesar, 25 x 15 x 1 mm) and W wire 

(99.99%, Sigma Aldrich, 1 mm diameter) were employed as the working electrodes. The exposed area of 

Al and Cu WEs to the electrolyte was limited to 2.25 cm2 by covering the rest of the area with epoxy or 

electrochemical stop liquor. Prior to deposition, Al electrodes were first polished with SiC paper of 180 

grit, rinsed with water and dried with kimwipes. Afterwards they were treated by an acid solution of 70% 

H3PO4, 25% H2SO4 and 5% HNO3 by volume for 10 minutes to remove the native oxides from the Al 

surface. Cu electrodes were pretreated in an acid solution of 10 % H2SO4 and 90% H2O (by volume) for 30 

seconds. Both electrodes were then cleaned with water, dried with kimwipes and transferred to the glove 
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box for immediate use. For W electrodes, mechanical polishing using 180 grit SiC paper was applied prior 

to ED. 

2.2.4 Cell Setup 

All ED and cyclic voltammetry experiments were performed in a typical three-electrode 

electrochemical cell using Gamry Reference 600 Potentiostat/Galvanostat/ZRA, as illustrated in Figure 2. 

The three electrodes: counter, reference and working electrodes were immersed in the beaker containing 

the melt. During ED, the distance between CE, RE, and WE was fixed by passing the connecting wire 

through holes in a rubber cork. 

 

Figure 2. A schematic of the electrochemical cell; CE, RE, and WE represents the counter, reference, and 

working electrodes respectively. 
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2.3 Electrolyte Preparation 

2.3.1 Pretreatment of EMIM 

EMIM was first purified by heating it under vacuum (using Schlenk line) at 100°C for 24 hours 

[38]. This temperature is well above the melting temperature of EMIM (~ 77-79°C) thus the EMIM turns 

to liquid. After 24 hours of heating, upon removal of the flask from the heated oil bath, the melted EMIM 

crystallizes into solid. AlCl3-EMIM was prepared by adding AlCl3 to the crystallized EMIM in inert 

environment.  

The acid and base for the reaction bear a solid state while their reaction produces a liquid electrolyte 

at room temperature. Initially 2:1 molar ratio AlCl3-EMIM was synthesized and used for the ED process. 

EMIM (Aldrich, ≥95% pure) was heated at 100°C for 24 hours to remove moisture [38]. Upon addition of 

AlCl3, the reaction produced white fumes and the O2 level exceeded 20 ppm making it necessary to purge 

the glovebox while the reaction occurs. A vast majority of researchers heat EMIM at 60°C for 3 days. This 

method yielded relatively drier EMIM but the problem was found to lie with the EMIM out of the box. For 

this reason a higher purity EMIM (IL, >98% pure) was tested. 

One of the features of a dry EMIM is a much lighter color, close to white while a dark yellow or 

deep pale color corresponds to the presence of moisture. Instead of being in the form of dry granules or 

powder, the EMIM (IL, >98% pure) supplied was moist and pale out of the box indicating the presence of 

moisture. To resolve this, a two-step preheat treatment was performed to remove excess moisture from the 

EMIM. The EMIM was first taken out of the bottle and placed in weighing pans inside the glove box. These 

EMIM were evenly spread out and left inside the glove box for several days to ensure maximized surface 

area exposure to increase the evaporation rate. After a few days, depending upon the level of moisture in 

the EMIM, the chemical becomes drier losing its moist texture, and sticks together to form a brittle network 

structure.  
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These dried EMIM were then ground in a mortar with a pestle to fine granules. The next preheat 

step included further heating these granules in Pyrex dishes at 40°C for several days (3 to 5) inside the 

glove box. The quantity of EMIM being heated in the dishes was carefully controlled making sure that the 

height of the spread out chemical does not exceed 2 to 3 mm to ensure uniform heating. The EMIM was 

taken out of the Pyrex dish and ground to finer granules every 24 hours to progressively increase the contact 

area of the grains. This increased the rate and efficiency of drying resulting in very fine dry EMIM grains 

already lighter in color. This preheated EMIM is now well suited for the heating process.  

 

Figure 3. Photograph of 2:1 AlCl3:EMIM electrolyte under agitation. 

The heating chosen for the purpose of this research is 60°C for 3 days in an oil bath being the most 

widely used technique. The resultant EMIM has a much whiter color indicating very low moisture content. 

The heated EMIM was left for a few hours to cool down and then transferred back to the glove box where 

AlCl3 was introduced to form 2:1 molar ratio AlCl3-EMIM electrolyte. The O2 level in the glove box only 

increased from <0.1 to 0.3 ppm which is almost negligible proving the effectiveness of the preheat 

treatment. The electrolyte prepared was dark yellow in color. Further purification of the electrolyte was 

carried out by stirring the electrolyte with a pure Al plate immersed in the liquid electrolyte for 3 days. The 

purified electrolyte appeared to be light yellow in color as shown in Figure 3. 
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2.4 Results and Discussion  

2.4.1 Dissolution of NiCl2 in AlCl3-EMIM System 

For Al-Ni deposition, the introduction of active Ni2+ ions in the electrolyte is required. Previous 

study suggests that NiCl2 is difficult to dissolve in acidic AlCl3-BPC while it was readily dissolved in basic 

melt [35]. To study the dissolution behavior of NiCl2 in AlCl3-EMIM, 0.01 M NiCl2 was first directly added 

to the AlCl3-EMIM electrolyte. After 24 hours of stirring, a bright orange suspension was obtained, as 

shown in Figure 4(a). Leaving the electrolyte unstirred for 24 hours forced the undissolved particles to settle 

at the bottom of the beaker, as shown in Figure 4(b). These observations suggest low solubility of NiCl2 in 

acidic choloraluminate electrolyte, in agreement with previous reports [35]. 

 

Figure 4. (a) Photograph of bright orange AlCl3-EMIM-NiCl2 suspension; (b) AlCl3-EMIM-NiCl2 with 

undissolved NiCl2 at the bottom. 

Next, the effect of temperature on the dissolution behavior of NiCl2 in the electrolyte was studied. 

It was reported that elevated temperature enhanced NiCl2 dissolution in AlCl3-BPC [7]. The electrolyte was 

carefully elevated to 80°C using a heating mantle and stirred for 24 hours, as shown in Figure 5. The 

resultant electrolyte appeared to be one shade darker but still had undissolved particles suspended indicating 

poor dissolution of NiCl2. 
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Figure 5. Photograph of AlCl3-EMIM-NiCl2 being heated and stirred in heating mantle at 80°C. 

 

Figure 6. Photograph of basic NiCl2-EMIM-AlCl3 solution. 

It was found that NiCl2 was readily dissolvable in basic AlCl3-EMIM electrolyte, similar to 

previous study [42]. Desired amount of NiCl2 was first added to EMIM. AlCl3 was then slowly introduced 

in the beaker making sure that the AlCl3 falls on the NiCl2. AlCl3 immediately reacts with EMIM leading 
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to an acid base reaction. This reaction is exothermic, accompanied by the release of white fumes. When the 

molar fraction of AlCl3 is less than 0.5, the solution formed was basic which favors the dissolution of NiCl2. 

A dark green solution was observed, as depicted in Figure 6. Increasing NiCl2 concentration from 0.026 to 

0.1 M changes the color of the solution from dark green to blue. 

 

Figure 7. Photograph of acidic AlCl3-EMIM-NiCl2 solution. 

As soon as the molar fraction of AlCl3 reaches 0.5, the solution turns brown (Figure 7), indicating 

a shift from basic to acidic solution. Further addition of AlCl3 was performed to shift the reduction potential 

of Al to support its deposition. It was noticed that AlCl3 was easily dissolved beyond 1:1 molar ratio of 

AlCl3: EMIM but could not reach 2:1 as excess AlCl3 precipitated without dissolution. This can be 

understood by the fact that Ni2+ ions consume some of the EMIM anions making less available reactive 

anions for Al3+ cations. For this reason the molarity of the electrolyte was limited to 1.5:1 for all 

experiments. The resultant solution was a clear brown solution having Al and Ni ions.  

Further purification of the AlCl3-EMIM-NiCl2 electrolyte was attempted by dipping a pure Al plate 

and stirring the solution for 5 days. The solution changed its color to light green as shown in Figure 8(a). 

An interesting characteristic which was noted was the presence of black powder in the solution after the 
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purification process. The black powder starts to form as soon as Al comes in contact with the solution and 

clings to Al as seen in Figure 8(b).  

 

Figure 8. (a) Purifying AlCl3-EMIM-NiCl2 with Al plate; (b) black powder on Al plate. 

 

Figure 9. Photograph of black powder magnetically accumulated on stir rod. 

The solution was filtered using a 90 mm diameter filter paper which separated the black powder 

from the solution. The black powder had a hint of green color as seen on the filter papers which suggests it 
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being an oxide of Ni. These powders also displayed a magnetic nature since they adhered to the stir rod as 

seen in Figure 9. This process led to a solution with poor ED characteristics. To avoid this, the electrolytes 

prepared for this research were used without purification with Al plate. 

For the purpose of this research, 1.5:1 molar ratio AlCl3-EMIM, 1.5:1 molar ratio AlCl3-EMIM 

containing 0.024 mol l-1 NiCl2, 1.5:1 molar ratio AlCl3-EMIM containing 0.026 mol l-1 NiCl2 and 1.5:1 

molar ratio AlCl3-EMIM containing 0.1 mol l-1  NiCl2 were synthesized following the above stated method. 

All solutions appeared clear and were kept under inert environment. 

2.4.2 Electrochemical Characteristics of the Electrolytes 

To better understand the characteristics of the synthesized electrolytes, cyclic voltammograms were 

obtained in a three electrode configuration cell. In conventional cyclic voltammetry, a voltage sweep is 

generally applied on the WE from a positive to a negative potential within the electrochemical window of 

the electrolyte and the corresponding current density is recorded. The ions in the electrolyte undergo 

oxidation and reduction on the WE resulting in stripping and deposition of the metal respectively. These 

redox reactions generate current peaks in the voltammogram that can be effectively used to optimize the 

ED by selecting desired currents or voltages.  

A voltage sweep starting from 2 V vs Al/Al3+ to -0.5 V and reversed back to 2 V was applied to 

determine the oxidation and reduction peaks suggesting dissolution and deposition of the respective metals 

or alloys respectively. It should be noted here that all voltages mentioned in this work are measured vs 

Al/Al3+, for convenience only voltage value is written. The cyclic voltammograms acquired for electrolytes 

of different molarities revealed the potentials for the ED of Al, Ni and Al-Ni alloy which could be then used 

to optimize the constant potential or potential waveform to achieve desired metal contents. Cyclic 

voltammetry was performed on inert W electrode at room temperature to reveal the reduction and oxidation 

potentials. The peak shapes in the voltammograms are consistent with those illustrated for AlCl3-EMIM 

and AlCL3-EMIM-NiCl2 [7, 24, 29, 35, 43-47]. The voltammogram in AlCl3-EMIM is depicted in Figure 

10(a).  
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Figure 10. A series of cyclic voltammograms on W electrodes measured with scan rate of 20 mV/s with a 

step size of 2 mV: (a) AlCl3-EMIM; (b) AlCl3-EMIM compared with AlCl3-EMIM containing 0.024 mol l-

1 NiCl2; (c) AlCl3-EMIM compared with AlCl3-EMIM containing 0.026 mol l-1 NiCl2; (d) AlCl3-EMIM 

compared with AlCl3-EMIM containing 0.1 mol l-1 NiCl2. 

A reduction wave C1 and an oxidation peak A1 with a peak potential at 0.44 V is observed which 

is attributed to the bulk deposition and bulk stripping of Al respectively. Al reduction started at -130 mV 

vs Al/Al3+ revealing the need of a relatively large nucleation overpotential [24]. Voltammograms obtained 

on W electrode in AlCl3-EMIM with 0.024 mol l-1 NiCl2, AlCl3-EMIM with 0.026 mol l-1 NiCl2 and AlCl3-

EMIM with 0.1 mol l-1 NiCl2 melts in contrast to AlCl3-EMIM without NiCl2 are shown in Figure 10(b-d). 

A close examination of these figures exposes reduction peaks C2 with the peak potentials around 0.4 V for 

electrolytes containing NiCl2 which is attributed to the deposition of bulk Ni, as confirmed by EDS analysis. 
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This reduction follows the reaction in Equation 2.2. This association also becomes evident since this peak 

is missing from the voltammogram of the melt without NiCl2. Consequently, minor oxidation peaks A3 with 

potentials ranging from 0.9 to 1.2 V corresponds to the relative stripping of bulk Ni, which correlates with 

the C3 peak [29].  

 

Figure 11. A comparison of cyclic voltammograms on W electrodes in AlCl3-EMIM, AlCl3-EMIM 

containing 0.024 mol l-1 NiCl2, AlCl3-EMIM containing 0.026 mol l-1 NiCl2 and AlCl3-EMIM containing 

0.1 mol l-1 NiCl2 measured with scan rate of 20 mV/s with a step size of 2 mV. 

The constant cathodic peaks ranging from -0.12 to 0.3 V can be attributed to the deposition of 

intermetallic Al-Ni alloys since this range corresponds to their deposition potential range which is  0.08 to 

-0.2 V [7]. The counterpart oxidation peaks A2 are considered as the stripping of the Al-Ni alloy. The 

stripping potential range of Al-Ni alloys is 0.6 V [29]. These intermetallics are deposited according to the 

reaction in Equation 3.1. Figure 11 shows the voltammograms of all the melts containing NiCl2 in 

comparison with the 1.5:1 AlCl3-EMIM melt. It can be clearly stated that the amount of NiCl2 dissolved in 
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the melt is in direct proportionality with the intensities of C2, A2 and A3 peaks. With more NiCl2 added, a 

greater concentration of Ni2+ ions are available in the electrolyte giving rise to higher reduction and 

oxidation peaks. On the contrary, Al reduction and oxidation peaks (C1 and A1) become less intense. This 

can be attributed to the decrease in available Al3+ ions due to more Ni2+ ions initially present in the solution.  

Jiang et al. [24] found the presence of an additional reduction and oxidation peak for Al at 0.1 V 

and 0.4 V respectively on a W electrode in 2:1 molar ratio AlCl3-EMIM molten salt. The stripping of Al at 

this reduction peak was attributed to the underpotential deposition (UPD) and relative oxidation proven by 

the Kolb-Gerischer’s UPD correlation. The presence of these UPD peaks were said to be visible only if the 

W substrate went through intensive pretreatment. Due to the small magnitude of these peaks, they were not 

visible due to the presence of other peaks at the same potentials in 1.5:1 molar ratio AlCl3-EMIM 

electrolyte. 

2.4.3 Effect of Working Electrode 

To understand how the working electrode affects the deposition/stripping potentials and current 

densities of Al and Ni, cyclic voltammograms were also acquired on Cu substrates initiating at 2 V sweeping 

to the negative direction and reversed at a negative potential of -0.5 V. CV of AlCl3-EMIM was depicted 

in Figure 12(a). Unlike inert W, Cu is electrochemically active thus an anodic potential vs. the aluminum 

reference electrode is observed until the first reduction peak is created. This potential can be related to the 

constant dissolution of Cu in the electrolyte [41]. The peak C1 on the scan attributed to the reduction of Al 

reveals that the deposition of Al starts at -0.2 V, which deviated slightly from the C1 on W. Consequently, 

the peak A1 corresponds to the oxidation of bulk Al where Al is completely stripped away from the substrate. 

The reduction peak C3 at 0.5 V conforms to the deposition of Cu as it lies in proximity of the standard 

reduction potential of Cu shown in Table 1. Cu undergoes oxidation represented by the A3 peak at 1.5 V 

since the Cu electrode etched away at this potential. Minor oxidation and reduction peaks (A2 and C2) can 

also be noticed in the voltammogram in Figure 12(a). These peaks are related to the underpotential stripping 

and deposition of Al on the Cu substrate. 
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Figure 12. A series of cyclic voltammograms on Cu electrodes measured with scan rate of 20 mV/s with a 

step size of 2 mV: (a) AlCl3-EMIM; (b) AlCl3-EMIM compared with AlCl3-EMIM containing 0.024 mol l-

1 NiCl2; (c) AlCl3-EMIM compared with AlCl3-EMIM containing 0.026 mol l-1 NiCl2; (d) AlCl3-EMIM 

compared with AlCl3-EMIM containing 0.1 mol l-1 NiCl2. 

Voltammograms recorded in AlCl3-EMIM with 0.024 mol l-1 NiCl2, AlCl3-EMIM with 0.026 mol 

l-1 NiCl2 and AlCl3-EMIM with 0.1 mol l-1 NiCl2 in comparison with AlCl3-EMIM without NiCl2 are shown 

in Figure 13(b-d). An additional Ni oxidation peak A3 at around 0.7 V shows up and a slight cathodic shift 

in peaks C2 is observed in Figure 12(b and c). The increase in intensity of the reduction peaks reveal the 

reduction potential of Al-Ni intermetallics and bulk Ni around 0 and 0.3 V respectively. The peak A3 

corresponds to the relative removal of the Al-Ni deposit. 
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Figure 13. A series of cyclic voltammograms measured with scan rate of 20 mV/s with a step size of 2 mV: 

(a) AlCl3-EMIM on W vs. Cu; (b) AlCl3-EMIM containing 0.024 mol l-1 NiCl2 on W vs. Cu; (c) AlCl3-

EMIM containing 0.026 mol l-1 NiCl2 on W vs. Cu; (d) AlCl3-EMIM containing 0.1 mol l-1 NiCl2 on W vs. 

Cu. 

These arguments can be supported by a close examination of the voltammograms recorded on Cu 

in comparison with W for these electrolytes, as shown in Fig 13(a-d). It can be noticed in Figure 13(b-d) 

that the Al-Ni stripping peaks on Cu are at the same potential as those on W. It is also noticed that the 

oxidation of bulk Ni peak around 1 V is hidden under the bigger A3 peak on the Cu voltammogram. The 

role of C3 also becomes clearer in Figure 13(d) as it coincides with the potential for bulk Ni deposition on 

the W counter electrode. Figure 14 depicts the voltammograms of all the melts containing NiCl2 in 

comparison with the 1.5:1 AlCl3-EMIM melt on Cu substrate. It can be clearly stated that the Ni and Al-Ni 
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peaks increase with the increasing amount of NiCl2 dissolved in the melt. The increase in the Ni peaks are 

counterbalanced by the evident decrease in the Al peaks owing to the less dissolution of AlCl3 in the 

electrolyte. 

 

Figure 14. A comparison of cyclic voltammograms on Cu electrodes in AlCl3-EMIM, AlCl3-EMIM 

containing 0.024 mol l-1 NiCl2, AlCl3-EMIM containing 0.026 mol l-1 NiCl2 and AlCl3-EMIM containing 

0.1 mol l-1 NiCl2 measured with scan rate of 20 mV/s with a step size of 2 mV. 

Table 1. Selected standard reduction potentials. 
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2.5 Conclusions 

From the present study on the synthesis and electrochemical properties of the selected electrolyte 

system, the following conclusions can be drawn, 

1. AlCl3-EMIM-NiCl2 electrolyte of desired molarities was successfully synthesized. Increasing 

the temperature did not aid the dissolution of NiCl2 in the acidic electrolyte. Dissolution of 

NiCl2 was favored in basic AlCl3-EMIM molten salt at room temperature. 

2. Cyclic voltammograms of the electrolytes on W electrode reveal clear oxidation and reduction 

peaks for Al, Ni and Al-Ni. Al deposition takes place at potentials more negative to -0.13 V 

while Ni and its alloy gets deposited ranging from 0 to 0.4 V. The current density of Ni 

oxidation and reduction peaks varies proportional to the amount of NiCl2 dissolved in the 

AlCl3-EMIM electrolyte. Al oxidation and reduction peaks show lesser peak potentials with 

increased Ni content owing to lesser number of Al3+ ions present in the melt. 

3. The use of an electrochemically active Cu working electrode shows a significant effect on the 

voltammograms obtained for the same electrolytes. Cu gets dissolved in the electrolyte in the 

forward scan range of 1 to 2 V. Additional reduction and oxidation peak of Cu is observed at 

0.5 and 1.5 V respectively in the voltammetry scan. Underpotential reduction peaks and relative 

oxidation peaks of Al are also observed with the use of Cu electrode. Unlike W, Cu electrode 

is highly reactive. The deposition and stripping potentials of Al, Ni and intermetallics does not 

change using Cu substrate.  
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CHAPTER 3: ELECTRODEPOSITION OF Al-Ni ALLOYS AND BILAYERS 

3.1 Background 

Elctrodeposition (ED) of Al-Ni alloys in chloroaluminate electrolytes have been researched by 

several groups in pursuit of optimizing their mechanical properties and microstructure. A brief comparative 

study of a few important research works is described next. 

3.1.1 Electrodeposition of Al-Ni Alloys in Chloroaluminate Melts 

During the ED of Al and Ni, Ni-Al reduction takes place according to the following reaction [29] 

 xNi2+ + 4(1 − x)Al2Cl7
− + (3 − x)e− ↔ NixAl1−x + 7(1 − x)AlCl4

− (3.1) 

where x (0 < x <1) represents the molar fraction of Ni in NixAl1-x alloy. Ali et al. [7] deposited Al-Ni 

intermetallic compounds (mainly Ni3Al) using potential control, current control and pulse current control 

in AlCl3-BPC-NiCl2 electrolyte at room temperature. Pure Ni was deposited at potentials greater than 0 V 

(0.3 to 0.4 V) while a mixture of Ni, Al and Ni3Al was obtained at potentials from -0.2 to -0.5 V or at 

current densities of -20 to -35 A m -2. Intermetallics and elemental Ni and Al co-deposited when this limit 

was exceeded. Ueda et al. [46]  performed ED of Al-Cr-Ni in 2:1 molar ratio AlCl3-EMIM with NiCl2 and 

CrCl2 at 338 K using constant potential control and pulse potential control producing 9 at.% and 20-27 at.% 

Ni respectively. In constant potential deposition, 20 C cm-2 charge density was used on the working 

electrode keeping the potential constant at 0 and -0.2 V which yielded Al:Cr:Ni of 90:1:9 and 97:2:1 

respectively. This low Ni concentration was enhanced greatly by using pulsed potentials with different 

frequencies and duty cycle ratios. Pitner et al. [29] deposited Ni and Ni-Al alloys using 2:1 molar ratio 

AlCl3-EMIM melt. Ni ion was introduced to the electrolyte by electrogenerating Ni wire electrode at 1.40 

V at 40°C. This method differs from conventional employment of NiCl2 to produce Ni2+ ions in the molten 

salt. The amount of Al in the deposit was found to be linearly dependent on the applied potential and 
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inversely proportional to Ni content. It was also deduced that the composition of the deposited alloy was 

dependent upon the charge before 60 mC of charge had been generated. Another commonly used system 

for ED of Al-Ni was researched by Moffat [6] on a W substrate in inorganic AlCl3-NaCl molten salt 

consisting of 0.17 mol L-1 [Ni2+]. Well adherent and dense deposits were obtained at voltages beyond 0.7 

V. Consequently, Ni1-xAlx alloys were deposited at potentials lesser than 0.6 V while pure Ni was obtained 

around 0.035 V vs. Al/Al3+.  

The deposition of a single phase Al-Ni intermetallic compound was found to be much more 

effective and convenient using the pulse current controlled electrolysis by Ali et al. [7] in AlCl3-BPC-NiCl2. 

A single phase fcc structure was observed by Pitner et al. [29] in Al-15 at.% Ni deposits produced at 0.3 V 

in AlCl3-EMIM electrolyte. These authors also found deposits produced at 0 V and lower potentials are fine 

magnetic black powders with a dendrite structure. XRD study of these powder deposit indicated the 

presence of fcc and amorphous phase. In AlCl3-NaCl system, Moffat [6] noticed that the deposited Al-Ni 

alloys are dense and adherent with nodular structures. Any increase in the overpotential voltage drastically 

affected the microstructure. A change from nodular to dendritic to powdery structure was observed as 

potential increases. 

Despite the limited studies on ED of Al-Ni alloys as summarized above, a systematic understanding 

of the effects of deposition parameter on alloy composition and microstructure of Al-Ni from organic ionic 

liquid electrolyte is still missing. The goal of this chapter is to provide a detailed investigation of the ED of 

Al-Ni in AlCl3-EMIM system using pulse potential control and investigate the effects of deposition 

parameters such as potential, duty ratio, frequency, deposition time and substrate on the composition and 

microstructure of the deposited alloys. 

3.1.2 Electrodeposition of Multilayered Al/Ni 

In addition to Al-Ni alloys, multilayered Al/Ni is an important engineering material as they exhibit 

self-propagating property with highly exothermic local reaction at the onset of an external ignition. Matsuda 

et al. [30] fabricated self-propagating Al/Ni flakes by dual source dc sputtering on nylon mesh substrate. 
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The atomic ratio of the multilayers was kept 1:1. The flakes were found to exhibit exothermic explosive 

characteristics. XRD analysis revealed the presence of Al and Ni before the spark ignition. On the contrary 

only NiAl interatomic compounds were observed after the exothermic reaction. These interatomic 

compounds formed due to the 1:1 atomic ratio of the Al and Ni in the flakes. Kuk et al. [31] studied the 

effects of Al/Ni ratio in multilayers prepared by dc magnetron sputtering. They observed that AlNi, AlNi3 

and Al3Ni2 formed after the ignition reaction when the atomic ratio of Al/Ni layers was kept around 1:1, 

1:3 and 3:2 respectively. A comparison of the reaction heats of different samples showed an inverse 

proportionality of Ni atomic ratio and the reaction heats. 

To the best of our knowledge, the electrodeposition of Al/Ni multilayers has not been reported 

before. Successful ED of Al/Ni multilayers will potentially enhance large scale production of these 

important materials in complex shapes and structure, which might open new doors to future research in 

smart energy materials. Thus in addition to ED of Al-Ni alloys, the second goal of this chapter is to 

investigate the prospects of the ED of Al/Ni multilayers in AlCl3-EMIM-NiCl2. The following milestones 

need to be accomplished, 

 ED of pure Al and Ni  

 ED of Ni/Al and Al/Ni bilayers 

 ED of Al/Ni multilayers 

3.2 Experimental Procedures 

Al-Ni alloys were electrodeposited using potential control (including constant and pulsed potential) in a 

three electrode cell. The electrolyte contains 1.5:1 molar ratio of AlCl3-EMIM with 0.024 to 0.1 M NiCl2. 

The preparation of the electrolyte is described in Chapter 2. In constant potential controlled deposition, a 

constant potential in the range of -0.5 to 1.5 V was used, as shown in Fig. 15(a).  In pulse potential controlled 

ED, square wave pulses of high and low voltages were used as depicted in Figure 15(b). The effects of 

magnitude of potentials, duty cycle ratios, and frequencies on alloy composition and microstructure were 

examined. Potentioamperometry and Repeating Potentioamperometry modules of Gamry Potentiostat were 
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utilized for constant and pulse potential deposition respectively. SEM and EDS analysis was performed 

using Hitachi SU-70 SEM and Hitachi S-800 SEM. FIB images with cross-section of the deposits were 

obtained using FEI Quanta 200 3D. X-Ray diffraction patterns were obtained using Philips X’Pert X-Ray 

Diffraction platform.  

 

Figure 15. Schematic waveforms of (a) constant potential; (b) pulse potential. 

3.3 Results and Discussion 

3.3.1 Effect of Deposition Potential on Alloy Composition 

The selection of the potentials for Al-Ni deposition was based on the electrochemical properties of 

the electrolytes in section 2.4.2 and 2.4.3. From chapter 2, the cyclic voltammograms reveal the potentials 

and respective current densities for the reduction and oxidation of Al and Ni in each melt. The negative 

potential deposited Al while the positive potential was responsible for the deposition of Al-Ni or bulk Ni. 

In both cases, the potential ranging from 0.15 to 0.4 V of the positive cycle of the pulse also stripped Al 

since this range also corresponds to the anodic oxidation of Al. Table 2 lists the samples prepared with 

respect to experimental parameters and their composition as a function of potential waveform applied. 

The concentration of Al and Ni in the alloy was found to be critically dependent on the amount of 

NiCl2 in the electrolyte, potential, duty cycle ratio and frequency. Samples 3 and 5 were deposited using 

the same potential, duty ratio and frequency in AlCl3-EMIM containing 0.026 M and 0.1 M NiCl2 
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respectively. It was observed that Ni concentration increased from 2 to 6 at.% by increasing the NiCl2 

dissolved in the melt. The increased Ni content corresponds to the increased partial current densities of 

reduction peaks C2 and C3 in Figure 12(c) and (d). On the other hand, the Al deposition peaks C1 in Figure 

12(c) and (d) become less intense with the increased [NiCl2] thus decreasing Al concentration in the alloy. 

This increment of Ni concentration with increasing [NiCl2] in the electrolyte is similar to previous studies 

[29]. However, this increment is not linear. For example, from sample 3 to 5, increasing [NiCl2] from 0.026 

to 0.1 M will increase Ni concentration from 2 at.% to 6 at.%. Hence, the concentration of Ni in the alloy 

increases nonlinearly with the increase of [NiCl2] in the melt. This non-linear proportionality with a much 

greater deviation can also be observed when comparing samples 1 and 6. 

Table 2. Electrodeposition parameters and composition of deposits. 

 

Sample 5 and 6 with duty ratios 1:1 and 9:1 respectively were deposited in AlCl3-EMIM containing 

0.1 M NiCl2 using the same potentials. It was observed that the Al and Ni contents increased with increasing 

the time of positive and negative cycle of the pulse respectively. In sample 5, the 9:1 ratio potential pulse 

spends most of the time in the negative cycle at -0.3 V responsible for depositing Al while the positive 

pulse which is just 1/10th of the total cycle, decreases the time for the deposition of Ni and stripping of Al. 

In sample 6, the 1:1 duty ratio enables both negative and positive cycles to deposit Al and Ni respectively 

for equal amounts of time thus increasing the Ni content compared to sample 5. The relationship of the duty 

cycle ratio to the Al and Ni concentrations is, however, not linear. Ideally, if 9:1 duty cycle produces 2.8 

at.% Ni with the balance being Al, a 1:1 duty cycle waveform with the same positive and negative potentials 

should produce 12.6 at.% Ni. However, instead we observe 6 at.% Ni, which is almost half of the expected 
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value. At Ni deposition potential, Al stripping peak of a current density of 18 mA.cm-2 is also present. Thus 

in 1:1 duty ratio, Al also gets stripped away more, which can be one of the reasons to explain the less than 

expected Ni concentration. 

 

Figure 16. Photograph of electrodeposited samples. 

The effect of frequency on the Al-Ni composition can be analyzed using samples 3 and 4 deposited 

with frequencies 1 and 0.5 Hz with the same electrolyte, potential and duty ratio. Decreasing the frequency 

by half resulted in almost double the amount of Ni in the deposited alloy. With a frequency of 1 and 0.5 

Hz, the deposition of Al and Ni takes place for 0.5 s and 1 s in each cycle respectively. As previously 
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described, Ni deposition occurs via three dimensional progressive nucleation following a current time 

transient with a very high slope followed by a diffusion controlled nuclei growth [29]. With more time for 

each cycle in the 0.5 Hz frequency, the current transient which increases steeply with time during the 

nucleation phase draws more current in 1 s as compared to that drawn in 2 cycles of 0.5 s in 1 Hz frequency. 

This increased current density on the Ni deposition cycle results in the increased Ni content. 

The surface roughness of the Cu substrate also played a vital role on the composition of the Al-Ni 

alloy. A very smooth electrodeposited Cu substrate (Kocour) was tested for this purpose. Sample 7 was 

deposited on electrodeposited Cu with the same potential, frequency, duty ratio and electrolyte as sample 

5. Ni concentration was found to increase from 6 to 17.7 at.%. The electrodeposited Cu substrate provides 

a much smoother surface with nano scale roughness which might favor metal nucleation. On rough Cu 

substrate, loose black powdered Ni sticks to the substrate due to its magnetic nature. Wiping the sample 

removes these powdered Ni. This black powder was notably less on the smoother Cu substrate. EDS 

analysis also revealed that the samples with darker color usually indicated higher Ni content, as shown in 

both Table 2 and Figure 16. 

3.3.2 Scanning Electron Microscopy (SEM) – Surface Morphology 

Visual appearance of the deposited samples can be seen in Figure 16. All Al-Ni deposits are 

compact and well adherent to the substrate. Pure Al deposit (sample 8) has a mirror like silver color. Pure 

Ni deposit (sample 9) has a dull black color. All other Al-Ni samples have colors in between pure Al and 

Ni and the darkness increases with Ni content.  

SEM image of sample 1 in Figure 17(a) shows dense nodular like structures consistent with 

previous work of electrodeposited Al-Ni alloys [7]. Sample 2 shows a columnar surface morphology with 

widely spread nodules, as shown in Figure 17(b). A close examination on the inset image of Figure 17(b) 

shows the presence of smaller nodules in the range of 10-15 µm with a cauliflower like appearance which 

is also observed in previous work [29].  
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Figure 17. SEM images of (a) sample 1; (b) sample 2; (c) sample 3; (d) sample 5. 

 

Figure 18. SEM image of sample 7. 
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The cauliflower structure appears due to higher deposition rate with the increase of potential [3, 

39]. Sample 3 and 5 show coarse flake like structures in Figure 17(c) and (d). The increase in the thickness 

of the deposits makes the surface of Al-Ni rougher [7]. This hypothesis suggests that since these samples 

were deposited for 2 hours, the columnar structure disappeared resulting in rough flake like structures.  

Another factor that might play a role in inflicting the flake structures in the deposits is the surface 

roughness of the Cu substrate used for the deposition. To test this and the effect of deposit thickness, 

hypothesized above, sample 7 was deposited on the smooth Cu substrate using the same parameters as 

sample 5. The microstructure of the alloy is depicted in Figure 18 which shows the same flake structures. 

So this structure is independent of the surface roughness. Also, similar to samples 1 and 2, sample 7  showed 

columnar structures, was deposited for 1 hour but it still displayed the same microstructure as that for a 2 

hour deposit on sample 5.  

 

Figure 19. SEM images of (a) pure Al deposit at -0.3 V in 1.5:1 M AlCl3-EMIM containing 0.026 M NiCl2; 

(b) pure Ni deposit at 0.4 V in 1.5:1 M AlCl3-EMIM containing 0.1 M NiCl2. 

Sample 3, 5 and 7 show the same flake structure and were all deposited using the same potential, 

duty cycle and frequency. Also this structure seems to be independent of the molarity of NiCl2 in the melt 

since it was different for sample 3. The formation of these flakes is not related to the potential used since 

sample 1 uses the same potential but formed columnar structure. At the same time, it is not due to the 

frequency since samples 1 and 2 have the same frequency. The only parameter which all of the flake 
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structured deposits have in common is the duty ratio. These results indicate that the increased time for the 

Ni deposition and Al stripping in the positive cycle of the pulse is affecting the microstructure. Al deposits 

generally have nodular morphology but they have also been reported to form flake structures [38]. While 

Ni deposits have been shown to have columnar cauliflower structures [3]. The flake structures of Al-Ni 

deposits observed here seem to be a hybrid of the flake Al and cauliflower Ni. 

In addition to depositing Al-Ni alloys, pure Al and pure Ni were also deposited on the 

electrodeposited Cu substrate. Pure Al was deposited at a constant potential of -0.3 V in 1.5:1 M AlCl3 -

EMIM containing 0.026 M NiCl2. The SEM image shown in Figure 19(a) reveal the surface morphology 

of the deposited metal. The deposit shows a very compact and dense deposit with very fine crystallites in 

the nanometer region similar to previous work [45, 47, 48]. Constant potential deposition at 0.4 V was 

utilized in 1.5:1 M AlCl2-EMIM containing 0.1 M NiCl2 to obtain pure Ni deposits. Compact and dense 

deposits with typical nodular cauliflower structures were obtained as illustrated in Figure 19(b) which has 

been previously observed in Ni deposits in chloroaluminate melts [3, 39]. 

3.3.3 X-Ray Diffraction (XRD) – Phase Identification 

To identify the presence of different compounds, crystal structure and phase, XRD analysis was 

carried out to XRD pattern obtained on the sample 1 is shown in Figure 20(a).  

 

Figure 20. XRD patterns of sample 1 (a) full pattern (b) zoomed in detailed pattern. 
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Sharp and well defined reflections revealing the presence of crystalline structure is observed for 

the alloy and the Cu substrate. A close inspection on the pattern in Figure 21(b) indicate FCC Cu diffraction 

peaks at 2θ = 43.3, 50.5 and 74.2° corresponding to (111), (200) and (220) indices. FCC Al diffraction 

peaks at 2θ = 38.6, 44.8, 65.4 and 78.6° corresponding to (111), (200), (220) and (311) indices. These peaks 

represent a single phase supersaturated FCC solid solution of Al-Ni . The pattern does not show diffraction 

peaks pertaining to pure Ni. Also, Al-Ni intermetallics are not present in the alloy.  

3.3.4 Electrodeposition of Al/Ni Bilayers 

An attempt to deposit Al/Ni multilayers starts with the deposition of bulk Al and Ni as shown in 

section 3.3.2. Various constant potentials/currents and pulse potentials were used to test the deposition 

characteristics of Al/Ni. A test bilayer sample with Ni deposited on electrodeposited Cu with a pulse 

potential of 0 and 0.78 V for 800 s and Al deposited at a constant -0.3 V for 150 s in AlCl3-EMIM containing 

0.026 M NiCl2 was prepared.  

The first cycle of the pulse potential waveform for the deposition of Ni was set to 0V. 0.78 V for 

the second cycle was chosen as the potential where the current becomes zero from voltammogram in Figure 

12(c). This type of waveform was selected to promote progressive nucleation of Ni in each cycle as opposed 

to a constant potential which imparts diffusion controlled growth of Ni nuclei. The Ni deposit appeared to 

be a dense dull black deposit similar to sample 9 while Al layer deposited on top of that had a uniform 

mirror like shiny silver deposit. A cross-section of the Ni/Al bilayer was milled using FIB as shown in 

Figure 21. 

The area chosen to mill was first coated with 1 µm Pt protective later. Progressive milling of the 

sample with decreasing currents as low as 50 pA revealed the presence of Al and Ni layers on 

electrodeposited Cu substrate. The SEM image in Figure 21 shows a clear color contrast between the darker 

Al and brighter Ni layers. However, the difference in color contrast between Ni and Cu is not clearly visible 

since their atomic numbers differ only by 1. The known thickness of the electrodeposited Cu is 1 µm. From 
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this, the thickness of Ni layer was estimated to be 1 µm while that of Al was 250 nm. The darker region 

beneath the electrodeposited Cu is the substrate. 

 

Figure 21. SEM image of a FIB cross-section of Ni/Al bilayer sample. 

Upon successfully depositing Al on Ni, the next step was to test the deposition of Ni on Al. For 

this, Al was deposited on the electrodeposited Cu WE at -0.3 V in AlCl3-EMIM containing 0.026 M NiCl2. 

A layer of Ni was attempted to deposit on the first Al layer using the same pulse potential waveform used 

in the previous bilayer. The resultant deposit appeared to have loosely adherent black deposit which upon 

wiping with kimwipes, revealed scattered black deposits on the Cu substrate.  Since the Cu substrate was 

visible, it clearly indicated that the Al layer deposited before got stripped away. This behavior can be 

explained by inspecting the cyclic voltammogram of the melt in Figure 12(c). It can be observed that in 

addition to the presence of the Ni deposition peak at 0 V, this potential also lies in the vicinity of Al 
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oxidation. Hence, upon electrodepositing Ni on Al, Al also got stripped away. Several constant potential 

and pulse potential combinations were tried to deposit Ni on Al, but in all the cases, Al stripped away.  

Current controlled ED of Ni on Cu was also attempted with current densities ranging from -0.5 to 

-3.75 mA.cm-2. Compact and well adherent Ni deposits were obtained at -3.75 mA.cm-2 on the 

electrodeposited Cu substrate. This optimum current density was then pursued to try to deposit Ni on Al. 

The SEM image of the FIB milled region for this sample did not show a very clear contrast so an ion image 

was obtained as shown in Figure 22. It can be seen that on depositing Ni, Al got stripped away leaving 

behind porous deposits. These deposits are mainly Ni but the presence of some quantity of Al or Al-Ni 

alloy can be expected. 

 

Figure 22. Ion image of a FIB cross-section of Al/Ni bilayer sample. 
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3.4 Conclusions 

From the present study on the ED of Al-Ni and Al/Ni multilayers, the following conclusions can 

be drawn, 

1. The concentration of Ni in electrodeposited Al-Ni alloys increases nonlinearly with the increase 

in molarity of NiCl2. Al and Ni contents increase with increasing the time of positive and 

negative cycle of the pulse respectively. Decreasing the frequency by half resulted in almost 

double the amount of Ni in the deposited alloy. A smoother surface increased Ni concentration 

from 6 to 17.7 at.%. 

2. The visual appearance of the deposits ranged from bright silver, dull silver, grey and black with 

a darker shade typically indicating higher Ni content. Al-Ni alloy typically showed nodular 

morphology with cauliflower structure. Flake structures, which were independent of surface 

roughness, were found to develop for 1:1 duty ratio. XRD on Al-Ni suggests the presence of 

supersaturated FCC crystalline solid solution of Al and Ni. 

3. Dense and well adherent Pure Al and Ni were deposited at -0.3 and 0.5 V in AlCl3 -EMIM 

containing 0.026 M NiCl2 showing very fine crystalline and cauliflower structures respectively. 

4. Ni/Al bilayer was successfully deposited in 1.5:1 AlCl3-EMIM containing 0.026 M NiCl2. 

Deposition of Al on Ni was achieved, however, the deposition of Ni on Al is complicated due 

to the stripping of Al at the same potential at which Ni gets deposited.  
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CHAPTER 4: CONCLUSIONS AND FUTURE WORK 

Electrodeposition of Al-Ni alloys and Ni/Al bilayer has been successfully demonstrated in this 

work. In chapter 2 it was described that dissolution of NiCl2 in AlCl3-EMIM room temperature melt was 

found to be favorable in basic electrolyte. A detailed study on the electrochemical properties of the 

electrolyte using cyclic voltammetry has been established. The use of an electrochemically active Cu WE 

effects the electrochemistry of the electrolyte by dissolving Cu in the scan range of 1 to 2 V and introducing 

additional oxidation and reduction peaks pertaining to the stripping and deposition of Cu. The current 

density of Ni and Al oxidation and reduction peaks varies directly and indirectly to the amount of NiCl2 

dissolved in the AlCl3-EMIM electrolyte respectively. 

In chapter 3 it was demonstrated that the concentration of Ni in Al-Ni alloy increased with the 

increase in amount of NiC2 dissolved in the melt, increase in the time period of positive potential cycle, 

decrease in frequency and decrease in surface roughness of the WE. Al-Ni alloy typically showed nodular 

morphology with cauliflower structure. Flake structures, which were independent of surface roughness, 

were found to develop for 1:1 duty ratio. XRD on Al-Ni suggests the presence of supersaturated FCC 

crystalline solid solution of Al and Ni. Uniform Al/Ni bilayer was successfully deposited in 1.5:1 AlCl3-

EMIM containing 0.026 M NiCl2. Deposition of Al on Ni was achieved while the deposition of Ni on Al 

has not been successfully possible yet in this electrolyte. 

The collection of observations and findings in this thesis suggest a plethora of possibilities for 

further research. For instance studying the effect of other metals as WEs such as Ni, deposition of Ni on 

Al, Al/Ni nanopillars, electrodeposition of Al-Ni multilayer from other ionic liquids such as AlCl3-BPC-

NiCl2 and application of these multilayers as self-propagating materials can pave the way for next 

generation engineering applications. 
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